Skip to content

ML Training Pipeline

Train models to predict setup quality and edge.

Quick Start

python scripts/train_edge_model.py --symbol MNQ --timeframe 4h

# Or use skill
/train-model STRAT_02 --symbol MNQ --timeframe 4h

Features

Category Features
Pattern sweep_quality, ob_quality, fvg_present, confluence_score
Time hour_of_day, session, is_killzone
Context atr_percentile, trend_strength, htf_alignment

Models

Model Best For
LightGBM Default, fast
XGBoost Alternative
CatBoost Categorical features

Options

Option Description
--model Model type
--cv Cross-validation folds
--deploy Deploy after validation
--compare Compare vs production

Output

outputs/models/STRAT_02/
├── model_v3.pkl           # Trained model
├── model_v3.pkl.meta.json # Metadata
├── model_current.pkl      # Production
└── model_report.md        # Report

Validation

  • Time-series split (no shuffle)
  • Out-of-sample testing
  • Overfitting detection
  • Drift monitoring

Skill Usage

# Train and deploy
/train-model STRAT_02 --model lightgbm --deploy

# Compare to current
/train-model STRAT_02 --compare